Naphthalimide‐based N‐heterocyclic carbene (NHC) complexes of the type [(1,5‐cyclooctadiene)(NHC)RhCl)] (4 a–c), [(p‐cymene)(NHC)RuCl2)] (5 a–c), and [(NHC)CuBr] (6 a–c) were synthesized and investigated as antiproliferative agents that target DNA. The cytotoxic effects were largely… Click to show full abstract
Naphthalimide‐based N‐heterocyclic carbene (NHC) complexes of the type [(1,5‐cyclooctadiene)(NHC)RhCl)] (4 a–c), [(p‐cymene)(NHC)RuCl2)] (5 a–c), and [(NHC)CuBr] (6 a–c) were synthesized and investigated as antiproliferative agents that target DNA. The cytotoxic effects were largely driven by the naphthalimide structure, which is a DNA‐intercalating moiety. Regarding the metal center, the highest activities were observed with the rhodium complexes, and cytotoxic activity was significantly lower for the ruthenium derivatives. The stable coordination of the NHC ligands of selected complexes 4 b and 5 b in solution was confirmed, and their DNA binding properties were studied by UV/Vis spectroscopy, mass spectrometry, and circular dichroism. Stable intercalative binding into the DNA for all selected naphthalimide‐based complexes is indicated by high DNA binding constants. Particularly efficient binding was observed in the case of the rhodium complex 4 b. More detailed biological studies on 4 b showed promising activities against multidrug‐resistant Nalm‐6 cells and confirmed an important role for mitochondrial pathways in 4 b‐induced apoptosis.
               
Click one of the above tabs to view related content.