LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biological Evaluation and X‐ray Co‐crystal Structures of Cyclohexylpyrrolidine Ligands for Trypanothione Reductase, an Enzyme from the Redox Metabolism of Trypanosoma

Photo from wikipedia

The tropical diseases human African trypanosomiasis, Chagas disease, and the various forms of leishmaniasis are caused by parasites of the family of trypanosomatids. These protozoa possess a unique redox metabolism… Click to show full abstract

The tropical diseases human African trypanosomiasis, Chagas disease, and the various forms of leishmaniasis are caused by parasites of the family of trypanosomatids. These protozoa possess a unique redox metabolism based on trypanothione and trypanothione reductase (TR), making TR a promising drug target. We report the optimization of properties and potency of cyclohexylpyrrolidine inhibitors of TR by structure‐based design. The best inhibitors were freely soluble and showed competitive inhibition constants (Ki) against Trypanosoma (T.) brucei TR and T. cruzi TR and in vitro activities (half‐maximal inhibitory concentration, IC50) against these parasites in the low micromolar range, with high selectivity against human glutathione reductase. X‐ray co‐crystal structures confirmed the binding of the ligands to the hydrophobic wall of the “mepacrine binding site” with the new, solubility‐providing vectors oriented toward the surface of the large active site.

Keywords: reductase; crystal structures; ray crystal; trypanothione reductase; redox metabolism

Journal Title: ChemMedChem
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.