LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nucleobase Modified Adefovir (PMEA) Analogues as Potent and Selective Inhibitors of Adenylate Cyclases from Bordetella pertussis and Bacillus anthracis

Photo by gervele from unsplash

A series of 13 acyclic nucleoside phosphonates (ANPs) as bisamidate prodrugs was prepared. Five compounds were found to be non‐cytotoxic and selective inhibitors of Bordetella pertussis adenylate cyclase toxin (ACT)… Click to show full abstract

A series of 13 acyclic nucleoside phosphonates (ANPs) as bisamidate prodrugs was prepared. Five compounds were found to be non‐cytotoxic and selective inhibitors of Bordetella pertussis adenylate cyclase toxin (ACT) in J774A.1 macrophage cell‐based assays. The 8‐aza‐7‐deazapurine derivative of adefovir (PMEA) was found to be the most potent ACT inhibitor in the series (IC50=16 nm) with substantial selectivity over mammalian adenylate cyclases (mACs). AC inhibitory properties of the most potent analogues were confirmed by direct evaluation of the corresponding phosphonodiphosphates in cell‐free assays and were found to be potent inhibitors of both ACT and edema factor (EF) from Bacillus anthracis (IC50 values ranging from 0.5 to 21 nm). Moreover, 7‐halo‐7‐deazapurine analogues of PMEA were discovered to be potent and selective mammalian AC1 inhibitors (no inhibition of AC2 and AC5) with IC50 values ranging from 4.1 to 5.6 μm in HEK293 cell‐based assays.

Keywords: potent selective; adenylate cyclases; bacillus anthracis; bordetella pertussis; adefovir pmea; selective inhibitors

Journal Title: ChemMedChem
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.