LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and Synthesis of Bioisosteres of Acylhydrazones as Stable Inhibitors of the Aspartic Protease Endothiapepsin

Photo by edhoradic from unsplash

Acylhydrazone‐based dynamic combinatorial chemistry (DCC) is a powerful strategy for the rapid identification of novel hits. Even though acylhydrazones are important structural motifs in medicinal chemistry, their further progression in… Click to show full abstract

Acylhydrazone‐based dynamic combinatorial chemistry (DCC) is a powerful strategy for the rapid identification of novel hits. Even though acylhydrazones are important structural motifs in medicinal chemistry, their further progression in development may be hampered by major instability and potential toxicity under physiological conditions. It is therefore of paramount importance to identify stable replacements for acylhydrazone linkers. Herein, we present the first report on the design and synthesis of stable bioisosteres of acylhydrazone‐based inhibitors of the aspartic protease endothiapepsin as a follow‐up to a DCC study. The most successful bioisostere is equipotent, bears an amide linker, and we confirmed its binding mode by X‐ray crystallography. Having some validated bioisosteres of acylhydrazones readily available might accelerate hit‐to‐lead optimization in future acylhydrazone‐based DCC projects.

Keywords: design synthesis; bioisosteres acylhydrazones; protease endothiapepsin; chemistry; inhibitors aspartic; aspartic protease

Journal Title: Chemmedchem
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.