LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antitrypanosomatid Pharmacomodulation at Position 3 of the 8‐Nitroquinolin‐2(1H)‐one Scaffold Using Palladium‐Catalysed Cross‐Coupling Reactions

Photo by thanti_riess from unsplash

An antikinetoplastid pharmacomodulation study at position 3 of the recently described hit molecule 3‐bromo‐8‐nitroquinolin‐2(1H)‐one was conducted. Twenty‐four derivatives were synthesised using the Suzuki–Miyaura cross‐coupling reaction and evaluated in vitro on… Click to show full abstract

An antikinetoplastid pharmacomodulation study at position 3 of the recently described hit molecule 3‐bromo‐8‐nitroquinolin‐2(1H)‐one was conducted. Twenty‐four derivatives were synthesised using the Suzuki–Miyaura cross‐coupling reaction and evaluated in vitro on both Leishmania infantum axenic amastigotes and Trypanosoma brucei brucei trypomastigotes. Introduction of a para‐carboxyphenyl group at position 3 of the scaffold led to the selective antitrypanosomal hit molecule 3‐(4‐carboxyphenyl)‐8‐nitroquinolin‐2(1H)‐one (21) with a lower reduction potential (−0.56 V) than the initial hit (−0.45 V). Compound 21 displays micromolar antitrypanosomal activity (IC50=1.5 μm) and low cytotoxicity on the human HepG2 cell line (CC50=120 μm), having a higher selectivity index (SI=80) than the reference drug eflornithine. Contrary to results previously obtained in this series, hit compound 21 is inactive toward L. infantum and is not efficiently bioactivated by T. brucei brucei type I nitroreductase, which suggests the existence of an alternative mechanism of action.

Keywords: cross coupling; position; antitrypanosomatid pharmacomodulation; nitroquinolin one

Journal Title: ChemMedChem
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.