LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solid‐Phase Synthesis of Substrate‐Based Dipeptides and Heterocyclic Pseudo‐dipeptides as Potential NO Synthase Inhibitors

Photo by bermixstudio from unsplash

More than 160 arginine analogues modified on the C‐terminus via either an amide bond or a heterocyclic moiety (1,2,4‐oxadiazole, 1,3,4‐oxadiazole and 1,2,4‐triazole) were prepared as potential inhibitors of NO synthases… Click to show full abstract

More than 160 arginine analogues modified on the C‐terminus via either an amide bond or a heterocyclic moiety (1,2,4‐oxadiazole, 1,3,4‐oxadiazole and 1,2,4‐triazole) were prepared as potential inhibitors of NO synthases (NOS). A methodology involving formation of a thiocitrulline intermediate linked through its side‐chain on a solid support followed by modification of its carboxylate group was developed. Finally, the side‐chain thiourea group was either let unchanged, S‐alkylated (Me, Et) or guanidinylated (Me, Et) to yield respectively after TFA treatment the corresponding thiocitrulline, S‐Me/Et‐isothiocitrulline and N‐Me/Et‐arginine substrate analogues. They all were tested against three recombinant NOS isoforms. Several compounds containing a S‐Et‐ or a S‐Me‐Itc moiety and mainly belonging to both the dipeptide‐like and 1,2,4‐oxadiazole series were shown to inhibit nNOS and iNOS with IC50 in the 1–50 μM range. Spectral studies confirmed that these new compounds interacted at the heme active site. The more active compounds were found to inhibit intra‐cellular iNOS expressed in RAW264.7 and INS‐1 cells with similar efficiency than the reference compounds L‐NIL and SEIT.

Keywords: phase synthesis; substrate based; based dipeptides; synthesis substrate; solid phase; substrate

Journal Title: ChemMedChem
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.