Metallo-β-lactamases (MBLs) are increasingly involved as a major mechanism of resistance to carbapenems in relevant opportunistic Gram-negative pathogens. Unfortunately, clinically efficient MBL inhibitors still represent an unmet medical need .… Click to show full abstract
Metallo-β-lactamases (MBLs) are increasingly involved as a major mechanism of resistance to carbapenems in relevant opportunistic Gram-negative pathogens. Unfortunately, clinically efficient MBL inhibitors still represent an unmet medical need . We previously reported several series of compounds based on the 1,2,4-triazole-3-thione scaffold. In particular, Schiff bases formed between diversely 5-substituted-4-amino compounds and 2-carboxybenzaldehyde were broad-spectrum inhibitors of VIM-type, NDM-1 and IMP-1 MBLs. Unfortunately, they were unable to restore antibiotic susceptibility of MBL-producing bacteria, probably because of poor penetration and/or susceptibility to hydrolysis. To improve their microbiological activity, we developed compounds where the hydrazone-like bond of the Schiff bases was replaced by a stable ethyl link. This small change resulted in a narrower inhibition spectrum, as all compounds were poorly or not inhibiting NDM-1 and IMP-1, but some showed a significantly better activity on VIM-type enzymes, with K i values in the μM to sub-μM range. The resolution of the crystallographic structure of VIM-2 in complex with one inhibitor yielded valuable information about their binding mode. Interestingly, several compounds were shown to restore the β-lactam susceptibility of K. pneumoniae clinical isolates. In addition, selected compounds were found to be devoid of toxicity toward human cells at high concentration, thus showing promising safety.
               
Click one of the above tabs to view related content.