LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design, Synthesis and X-ray Structural Studies of Potent HIV-1 Protease Inhibitors Containing C-4 Substituted Tricyclic Hexahydro-furofuran derivatives as P2 ligands.

Photo by stefano_zocca from unsplash

The design, synthesis, X-ray structural, and biological evaluation of a series of highly potent HIV-1 protease inhibitors are reported herein. These inhibitors incorporated novel cyclohexane-fused tricyclic bis -tetrahydrofuran as P2… Click to show full abstract

The design, synthesis, X-ray structural, and biological evaluation of a series of highly potent HIV-1 protease inhibitors are reported herein. These inhibitors incorporated novel cyclohexane-fused tricyclic bis -tetrahydrofuran as P2 ligands in combination with a variety of P1 and P2'-ligands. Compound 4d with a difluoromethylphenyl P1 ligand and a cyclopropylaminobenzothiazole P2' ligand exhibited the most potent antiviral activity. Also, it maintained highly potent antiviral activity against a panel of highly multidrug-resistant HIV-1 variants. The corresponding inhibitor 5d with an enantiomeric ligand was significantly less potent in these antiviral assays. The new P2 ligands were synthesized in optically active form using enzymatic desymmetrization of meso -diols as the key step. To obtain molecular insight, high resolution X-ray structures of inhibitors 4b and 5d -bound HIV-1 protease were determined and structural analyses are highlighted here.

Keywords: synthesis ray; protease; potent hiv; hiv protease; design synthesis; ray structural

Journal Title: ChemMedChem
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.