LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Benocyclidine (BTCP) as Non‐labelled Reporter Ligand for MS Binding Assays for the PCP Ion Channel Binding Site of the Desensitized Torpedo Nicotinic Acetylcholine Receptor (nAChR)

Photo from wikipedia

In this study we present MS Binding Assays for the PCP ion channel binding site of Torpedo californica nicotinic acetylcholine receptor (nAChR) as an alternative to radioligand binding assays. As… Click to show full abstract

In this study we present MS Binding Assays for the PCP ion channel binding site of Torpedo californica nicotinic acetylcholine receptor (nAChR) as an alternative to radioligand binding assays. As MS Marker Benocyclidine (BTCP) was employed, found to be more affine (Kd of 84.2 nM) than the radioligands, e. g. [3H]PCP, used so far in respective binding assays. Based on a highly sensitive and fast LC‐ESI‐MS/MS method for quantification of BTCP samples, BTCP MS Binding Assays for the PCP ion channel binding site of Torpedo nAChR could be established comprising saturation, kinetic and competition experiments. The affinities obtained in competitive BTCP MS Binding Assays for ligands addressing the PCP ion channel binding site of Torpedo nAChR were in excellent accord with those reported from radioligand experiments. Thus, the new BTCP MS Binding Assays represent a potent and reliable alternative to radioligand binding assays used so far for the characterization of ligand binding to the PCP ion channel binding site of the nAChR.

Keywords: pcp ion; ion channel; channel binding; binding site; binding assays

Journal Title: ChemMedChem
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.