The olfactory sensory neurons (OSNs) of the olfactory epithelium (OE) exhibit a remarkable regenerative capability, which protects the population against environmental insult and enables adjustment to new odors. The lifespan… Click to show full abstract
The olfactory sensory neurons (OSNs) of the olfactory epithelium (OE) exhibit a remarkable regenerative capability, which protects the population against environmental insult and enables adjustment to new odors. The lifespan of OSNs is still open to question, with estimates ranging from 1 month to at least 1 year. However, the estimates come with some caveats, including low labeling efficiency and a focus solely on newborn neurons. We revisited the issue via the use of OMP‐tTA; TetO‐Cre; Rosa26‐fl(stop)‐Tdtomato (OMP‐tTA;TdT) mice, which allowed us to selectively label ∼95% of the OMP(+) OSN population that reach maturity by a given time and, by switching to doxycycline chow, to “chase” this preexisting OSN population. Two loading protocols were used: conception to 2 months old and conception to 4.5 months old. Surviving OSNs were common up to 6 months chase time in both groups, but more neurons survived when loading for 4.5 months as compared with 2 months. A spatial difference was evident: higher percentages of OSNs survived in the dorsomedial OE as compared with ventrolateral and in posterior versus anterior OE regions. Finally, proliferation rates anticorrelated with the spatial differences in OSN survival; higher proliferation rates were observed ventrally. Together, these results demonstrate spatial and temporal differences in OSN survival, highlighting it as a dynamic system that can be studied for factors affecting neuronal survival.
               
Click one of the above tabs to view related content.