Abstract In this work, we propose a methodology to detect the severity of carotid stenosis from a video of a human face with the help of a coupled blood flow… Click to show full abstract
Abstract In this work, we propose a methodology to detect the severity of carotid stenosis from a video of a human face with the help of a coupled blood flow and head vibration model. This semi‐active digital twin model is an attempt to link noninvasive video of a patient face to the percentage of carotid occlusion. The pulsatile nature of blood flow through the carotid arteries induces a subtle head vibration. This vibration is a potential indicator of carotid stenosis severity, and it is exploited in the present study. A head vibration model has been proposed in the present work that is linked to the forces generated by blood flow with or without occlusion. The model is used to generate a large number of virtual head vibration data for different degrees of occlusion. In order to determine the in vivo head vibration, a computer vision algorithm is adopted to use human face videos. The in vivo vibrations are compared against the virtual vibration data generated from the coupled computational blood flow/vibration model. A comparison of the in vivo vibration is made against the virtual data to find the best fit between in vivo and virtual data. The preliminary results on healthy subjects and a patient clearly indicate that the model is accurate and it possesses the potential for detecting approximate severity of carotid artery stenoses.
               
Click one of the above tabs to view related content.