LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiscale Modeling of a Modified Blalock-Taussig Surgery in a Patient-Specific Tetralogy of Fallot.

Photo from wikipedia

Tetralogy of Fallot (TOF) is a congenital heart anomaly that causes a drastic reduction in the oxygen level. In this study, we coupled a lumped-parameter model with a patient-specific three-dimensional… Click to show full abstract

Tetralogy of Fallot (TOF) is a congenital heart anomaly that causes a drastic reduction in the oxygen level. In this study, we coupled a lumped-parameter model with a patient-specific three-dimensional (3D) model which included a modified Blalock-Taussig (MBT) shunt. By forming a closed loop, we investigated the effects of certain parameters on the flow rates and the pressures at different locations of the developed network. A local sensitivity analysis on an initial zero-dimensional (0D) closed-loop model was conducted. The 0D lumped parameter (LP) model was then refined based on the results of the multiscale 0D-3D model and the local sensitivity analysis was repeated for the refined 0D model. It was shown that the maximum pressure of the pulmonary bed had the highest sensitivity of 94% to the diameter of MBT shunt. We observed that the existence of the flow in the shunt during the diastole caused an elevated wall shear stress in the pulmonary artery. In this work, we calculated the flow velocity and pressure field in a 3D patient-specific aorta with an MBT shunt, and then we used the results to increase the accuracy of our LP model to simulate numerous 0D simulations in a significantly shorter time, which is potentially applicable for medical decision-making. This article is protected by copyright. All rights reserved.

Keywords: patient specific; blalock taussig; model; modified blalock; tetralogy fallot

Journal Title: International journal for numerical methods in biomedical engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.