LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Monitoring Complex Formation by Relaxation‐Induced Pulse Electron Paramagnetic Resonance Distance Measurements

Photo from wikipedia

Abstract Biomolecular complexes are often multimers fueling the demand for methods that allow unraveling their composition and geometric arrangement. Pulse electron paramagnetic resonance (EPR) spectroscopy is increasingly applied for retrieving… Click to show full abstract

Abstract Biomolecular complexes are often multimers fueling the demand for methods that allow unraveling their composition and geometric arrangement. Pulse electron paramagnetic resonance (EPR) spectroscopy is increasingly applied for retrieving geometric information on the nanometer scale. The emerging RIDME (relaxation‐induced dipolar modulation enhancement) technique offers improved sensitivity in distance experiments involving metal centers (e.g. on metalloproteins or proteins labelled with metal ions). Here, a mixture of a spin labelled ligand with increasing amounts of paramagnetic CuII ions allowed accurate quantification of ligand‐metal binding in the model complex formed. The distance measurement was highly accurate and critical aspects for identifying multimerization could be identified. The potential to quantify binding in addition to the high‐precision distance measurement will further increase the scope of EPR applications.

Keywords: paramagnetic resonance; electron paramagnetic; distance; relaxation induced; pulse electron

Journal Title: Chemphyschem
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.