LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring AuRh Nanoalloys: A Computational Perspective on the Formation and Physical Properties

Photo by kalenemsley from unsplash

Abstract We studied the formation of AuRh nanoalloys (between 20–150 atoms) in the gas phase by means of Molecular Dynamics (MD) calculations, exploring three possible formation processes: one‐by‐one growth, coalescence,… Click to show full abstract

Abstract We studied the formation of AuRh nanoalloys (between 20–150 atoms) in the gas phase by means of Molecular Dynamics (MD) calculations, exploring three possible formation processes: one‐by‐one growth, coalescence, and nanodroplets annealing. As a general trend, we recover a predominance of Rh@Au core‐shell ordering over other chemical configurations. We identify new structural motifs with enhanced thermal stabilities. The physical features of those selected systems were studied at the Density Functional Theory (DFT) level, revealing profound correlations between the nanoalloys morphology and properties. Surprisingly, the arrangement of the inner Rh core seems to play a dominant role on nanoclusters’ physical features like the HOMO‐LUMO gap and magnetic moment. Strong charge separations are recovered within the nanoalloys suggesting the existence of charge‐transfer transitions.

Keywords: exploring aurh; nanoalloys computational; aurh nanoalloys; computational perspective; formation

Journal Title: Chemphyschem
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.