LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ground‐State Photoelectron Circular Dichroism of Methyl p‐Tolyl Sulfoxide by Single‐Photon Ionisation from a Table‐Top Source

Photo by flyd2069 from unsplash

Abstract Single‐photon ionisation of enantiopure methyl p‐tolyl sulfoxide by circularly polarised light at 133 nm shows remarkably strong photoelectron circular dichroism (PECD), which has been measured in a velocity‐map‐imaging spectrometer. Both… Click to show full abstract

Abstract Single‐photon ionisation of enantiopure methyl p‐tolyl sulfoxide by circularly polarised light at 133 nm shows remarkably strong photoelectron circular dichroism (PECD), which has been measured in a velocity‐map‐imaging spectrometer. Both enantiomers were measured, each showing a PECD of a similar magnitude (ca. 25 %). These experiments were carried out with a tabletop high‐harmonic source with a photon energy of 9.3 eV, capable of ionising the electronic ground state of most organic and inorganic molecules. Ab‐initio scattering calculations provide a theoretical value of the expected chiral asymmetry parameter, and agree very well with the measured values once orbital mixing via configuration interaction in the cation is taken into account. This study demonstrates a simple photoionisation scheme that can be readily applied to study the time‐resolved PECD of photochemical reactions and suggests a pronounced sensitivity of PECD to electronic configuration interaction in the cation.

Keywords: methyl tolyl; photon ionisation; tolyl sulfoxide; single photon; photon; photoelectron circular

Journal Title: Chemphyschem
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.