LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electron-Rich π-Extended Diindolotriazatruxene-Based Chemosensors with Highly Selective and Rapid Responses to Nitroaromatic Explosives.

Photo by mathieustern from unsplash

A series of electron-rich π-extended diindolotriazatruxene-based compounds DIT, 4Py-DIT (bearing pyrene units) and 4PyF-DIT (bearing fluorene units) have been explored and investigated as fluorescence chemosensors. Quantitative analysis through fluorescence titrations… Click to show full abstract

A series of electron-rich π-extended diindolotriazatruxene-based compounds DIT, 4Py-DIT (bearing pyrene units) and 4PyF-DIT (bearing fluorene units) have been explored and investigated as fluorescence chemosensors. Quantitative analysis through fluorescence titrations showed that the resulting DIT molecules exhibited highly selective response to electron-deficient nitroaromatic explosives. The calculated Stern-Volmer quenching constants (>4.0×103  M-1 ) revealed that these sensors were much more sensitive in solution compared to most of the existing small-molecule fluorescence chemosensors based on pyrene, triphenylene, triphenylamine, and triazatruxene skeletons. Fluorescence quenching showed that the sensors adsorbed on paper were sensitive to explosives in the solid, solution, and vapor phases, with fast response times of about 10 s. Moreover, these chemosensors are reusable for the detection of nitroaromatic compounds as they recover their fluorescence intensity after quenching.

Keywords: highly selective; electron rich; diindolotriazatruxene based; fluorescence; extended diindolotriazatruxene; rich extended

Journal Title: ChemPlusChem
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.