Hybrid perovskites have recently received much attention in optoelectronic applications. However, hybrid perovskites are unstable in a humid environment. Mixed halide perovskites (MHPs) show enhanced stability and band-gap tunability upon… Click to show full abstract
Hybrid perovskites have recently received much attention in optoelectronic applications. However, hybrid perovskites are unstable in a humid environment. Mixed halide perovskites (MHPs) show enhanced stability and band-gap tunability upon engineering of their halide composition. Here, MHPs are prepared through a solvent-free mechanochemical synthesis (MCS) route that allows superior control over halide compositions than the solvent synthesis routes (SS). The MCS route eliminates the problem in the preparation of MAPb(Ix Br1-x )3 with continuously varying x, while maintaining the material properties and suppressing phase segregation present in SS routes. UV-vis absorption and X-ray diffraction patterns confirm the production of the desired pure-phase MHPs. For MAPb(Ix Br1-x )3 (0≤x≤1), with increased ratio of halide (x), the cubic phase gradually transforms into the tetragonal phase and band-gap tunability is accomplished. The MCS route for the preparation of MHPs is a very promising and efficient technique for superior control in optoelectronic properties, leading to improved control in fabrication approaches.
               
Click one of the above tabs to view related content.