LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fine-Tuning Plasmon-Molecule Interactions in Gold-BODIPY Nanocomposites: The Role of Chemical Structure and Noncovalent Interactions.

Photo by vlisidis from unsplash

Strong coupling between localized surface plasmons and molecular absorptions leads to remarkable changes in the photophysical properties of dye-loaded metal nanoparticles. Here, we report supramolecular nanocomposites consisting of BODIPY, tryptophan,… Click to show full abstract

Strong coupling between localized surface plasmons and molecular absorptions leads to remarkable changes in the photophysical properties of dye-loaded metal nanoparticles. Here, we report supramolecular nanocomposites consisting of BODIPY, tryptophan, and gold nanoparticles, and investigate the effect of structural variations on their photophysical properties. Our results indicate that the photostability and photosensitization properties of the nanocomposites depend on the chemical composition of the BODIPY molecules. The singlet oxygen quantum yield of the nanocomposites NC1 (BODIPY, B1 bearing a single methyl group) and NC3 (BODIPY, B3 with 5 methyl and 2 iodo groups) were 0.46 and 0.42, respectively, which were significantly higher compared to their individual components. Ultrafast spectroscopy studies revealed that the migration of photoexcited BODIPY electrons to the plasmonic photoexcitation allowed electron transfer into the singlet oxygen states, thereby leading to efficient generation of singlet oxygen.

Keywords: fine tuning; plasmon molecule; singlet oxygen; interactions gold; tuning plasmon; molecule interactions

Journal Title: ChemPlusChem
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.