LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development and Characterization of Solution-Processable Dithieno[3,2-b : 2',3'-d]thiophenes Derivatives with Various End-capped Groups for Organic Field-Effect Transistors.

Photo from wikipedia

In this paper, four organic materials based on dithieno[3,2-b : 2',3'-d]thiophene (DTT) core structure with end-capping groups (phenyl and thienyl) and linker (acetylenic and olefinic) between DTT-core and end-capping groups were synthesized… Click to show full abstract

In this paper, four organic materials based on dithieno[3,2-b : 2',3'-d]thiophene (DTT) core structure with end-capping groups (phenyl and thienyl) and linker (acetylenic and olefinic) between DTT-core and end-capping groups were synthesized and characterized as solution-processable organic semiconductors (OSCs) for organic field-effect transistors (OFETs). Thermal, optical, and electrochemical properties of the corresponding materials were determined. Next, all DTT-derivatives were coated by solution-shearing method, and the thin-film microstructures and morphologies were investigated. To investigate the electrical performance of four newly synthesized DTT-derivatives, bottom-gate/top-contact OFETs were fabricated and characterized in ambient condition. It was found that substitution of acetylenic for olefinic linkers between DTT-cores and end-capping groups enhanced device performance. Especially, the resulting OFETs based on the compound containing phenylacetylene exhibited the highest hole mobility of 0.15 cm2 /Vs and current on/off ratio of ∼106 , consistent with film morphology and texture showing long range interconnected crystalline grains and strong diffraction peaks.

Keywords: field effect; organic field; effect transistors; solution; solution processable; end

Journal Title: ChemPlusChem
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.