LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single-Source-Precursor Derived Transition Metal Alloys Embedded in Nitrogen-Doped Porous Carbons as Efficient Oxygen Evolution Electrocatalysts.

Photo from wikipedia

Carbon supported metallic nanomaterials are of great interest due to their low-cost, high durability and promising functional performance. Herein, a highly active oxygen evolution reaction (OER) electrocatalyst comprised of defective… Click to show full abstract

Carbon supported metallic nanomaterials are of great interest due to their low-cost, high durability and promising functional performance. Herein, a highly active oxygen evolution reaction (OER) electrocatalyst comprised of defective carbon shell encapsulated metal (Fe, Co, Ni) nanoparticles and their alloys supported on in-situ formed N-doped graphene/carbon nanotube hybrid is synthesized from novel single-source-precursors (SSP). The precursors are synthesized by a facile one-pot reaction of tannic acid with polyethylenimine and different metal ions and subsequent pyrolysis of the SSP. Benefiting from the heteroatom doping of carbon and formation of well-encapsulated metal/alloy nanoparticles, the obtained FeNi@NC-900 catalyst possesses lowest overpotentials of 310 mV to achieve a current density of 10 mA cm-2 for OER with a small Tafel slope value of 45 mV dec-1 , indicating excellent catalytic performance due to the following features: (1) A synergistic electronic effect among metal alloy nanoparticles, nitrogen-doped carbon, and entangled carbon nanotubes; (2) penetration of electrolyte is promoted towards the active sites through the porous structure of the formed mesoporous carbon clusters; (3) the unique core-shell nanostructure of the hybrid material effectively curbs the degradation of electrocatalyst by protecting the alloy nanoparticles from harsh electrolyte. This work advances an inexpensive and facile method towards the development of transition metal-based hybrid material for potential energy storage and conversion.

Keywords: oxygen evolution; carbon; nitrogen doped; transition metal; single source; metal

Journal Title: ChemPlusChem
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.