LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controlled immobilization of a palladium complex/laccase hybrid into a macrocellular siliceous host.

Photo by chuttersnap from unsplash

This study investigates the site-directed immobilization of a hybrid catalyst bearing a biquinoline-based-Pd(II) complex (1) and a robust laccase within cavities of a silica foam to favor veratryl alcohol oxidation.… Click to show full abstract

This study investigates the site-directed immobilization of a hybrid catalyst bearing a biquinoline-based-Pd(II) complex (1) and a robust laccase within cavities of a silica foam to favor veratryl alcohol oxidation. We performed the grafting of 1 at a unique surface located lysine of two laccase variants, either at closed (1⊂UNIK157) or opposite position (1⊂UNIK71) of the enzyme oxidation site. After immobilization into the cavities of silica monoliths bearing hierarchical porosity, we show that catalytic activity is dependent on the orientation and loading of each hybrid, 1⊂UNIK157 being twice more active than 1⊂UNIK71 (203 TON vs 100 TON) when operating under continuous flow. These systems can be reused 5 times, with an operational activity remaining as high as 40 %. We show that the synergy between 1 and laccase can be tuned within the foam. This work is a proof of concept for controlling the organization of a heterogeneous hybrid catalyst using a Pd/laccase/silica foam.

Keywords: immobilization; immobilization palladium; complex laccase; palladium complex; controlled immobilization; laccase

Journal Title: ChemPlusChem
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.