LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Rechargeable High-Temperature Molten Salt Iron-Oxygen Battery.

Photo from wikipedia

The energy and power density of conventional batteries are far lower than their theoretical expectations, primarily because of slow reaction kinetics that are often observed under ambient conditions. Here we… Click to show full abstract

The energy and power density of conventional batteries are far lower than their theoretical expectations, primarily because of slow reaction kinetics that are often observed under ambient conditions. Here we describe a low-cost and high-temperature rechargeable iron-oxygen battery containing a bi-phase electrolyte of molten carbonate and solid oxide. This new design merges the merits of a solid-oxide fuel cell and molten metal-air battery, offering significantly improved battery reaction kinetics and power capability without compromising the energy capacity. The as-fabricated battery prototype can be charged at high current density, and exhibits excellent stability and security in the highly charged state. It typically exhibits specific energy, specific power, energy density, and power density of 129.1 Wh kg-1 , 2.8 kW kg-1 , 388.1 Wh L-1 , and 21.0 kW L-1 , respectively, based on the mass and volume of the molten salt.

Keywords: oxygen battery; iron oxygen; energy; high temperature; molten salt; battery

Journal Title: ChemSusChem
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.