LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Co/CoOx Nanoparticles Embedded on Carbon for Efficient Catalysis of Oxygen Evolution and Oxygen Reduction Reactions.

Photo by coollew from unsplash

The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are important electrochemical reactions to realize clean energy technologies. Herein, we prepared a hybrid electrocatalyst consisting of Co/CoOx nanoparticles embedded… Click to show full abstract

The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are important electrochemical reactions to realize clean energy technologies. Herein, we prepared a hybrid electrocatalyst consisting of Co/CoOx nanoparticles embedded in amorphous carbon through the simple pyrolysis of cobalt-based zeolitic terephthalate frameworks. The pyrolysis temperature significantly influenced the structure morphology and catalytic behavior. Good contact between Co/CoOx and amorphous carbon resulted in a high catalytic efficiency. The hybrid obtained under pyrolysis temperature of 600 °C exhibited the highest performance for OER, offering a stable current density of 10 mA cm-2 at 277 mV in basic media. Besides good OER behavior, it also showed good ORR performance [onset potential: ∼0.87 V vs. the reversible hydrogen electrode (RHE), diffusion-limiting current density: ∼4.9 mA cm-2 ]. This work describes a novel and efficient catalyst, and greatly expands the scope of low-cost Co-based electrocatalysts for various electrochemical reactions without the need for N-containing ligands.

Keywords: oxygen; carbon; oxygen evolution; coox nanoparticles; nanoparticles embedded; oxygen reduction

Journal Title: ChemSusChem
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.