LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quasi-solid-State Electrolytes for Low-Grade Thermal Energy Harvesting using a Cobalt Redox Couple.

Photo from wikipedia

Thermoelectrochemical cells, also known as thermocells, are electrochemical devices for the conversion of thermal energy directly into electricity. They are a promising method for harvesting low-grade waste heat from a… Click to show full abstract

Thermoelectrochemical cells, also known as thermocells, are electrochemical devices for the conversion of thermal energy directly into electricity. They are a promising method for harvesting low-grade waste heat from a variety of different natural and manmade sources. The development of solid- or quasi-solid-state electrolytes for thermocells could address the possible leakage problems of liquid electrolytes and make this technology more applicable for wearable devices. Here, we report the gelation of an organic-solvent-based electrolyte system containing a redox couple for application in thermocell technologies. The effect of gelation of the liquid electrolyte, comprising a cobalt bipyridyl redox couple dissolved in 3-methoxypropionitrile (MPN), on the performance of thermocells was investigated. Polyvinylidene difluoride (PVDF) and poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) were used for gelation of the electrolyte, and the influence of the different polymers on the mechanical properties was studied. The Seebeck coefficient and diffusivity of the cobalt redox couple were measured in both liquid and gelled electrolytes, and the effect of gelation on the thermocell performance is reported. Finally, the cell performance was further improved by optimizing the concentration of the redox couple and the separation between the hot and cold electrodes, and the stability of the device over 25 h of operation is demonstrated.

Keywords: redox couple; couple; cobalt; thermal energy; low grade; quasi solid

Journal Title: ChemSusChem
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.