LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergistic Activation of Palladium Nanoparticles by Polyoxometalate-Attached Melem for Boosting Formic Acid Dehydrogenation Efficiency.

Photo by thebarlemy from unsplash

Pd nanoparticles (NPs) anchored on a phosphotungstic acid attached melem porous hybrid (PW/melem) were prepared by hybridization of phosphotungstic acid Pd salt and melem, followed by chemical reduction. PW/melem was… Click to show full abstract

Pd nanoparticles (NPs) anchored on a phosphotungstic acid attached melem porous hybrid (PW/melem) were prepared by hybridization of phosphotungstic acid Pd salt and melem, followed by chemical reduction. PW/melem was demonstrated to be an outstanding support that can stabilize and disperse small Pd NPs (2 nm), and significantly boost their efficiency for H2 generation from the dehydrogenation of formic acid (FA). Experimental results and mechanistic investigations indicate that a strong electronic interaction exists between Pd NPs and the PW anions; the PW anions accept electrons from Pd first and, during FA dehydrogenation, the reduced blue PW donates electrons to Pd. Moreover, melem plays an important role in hydrogen transfer and can accelerate H2 generation. The overall synergistic effect of PW and melem endows Pd NPs with extremely high activity and stability for complete FA conversion at 50 °C, achieving a high turnover frequency of 15 393 h-1 .

Keywords: synergistic activation; attached melem; dehydrogenation; formic acid; melem; efficiency

Journal Title: ChemSusChem
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.