LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molten-Salt-Assisted Synthesis of Hierarchical Porous MnO@Biocarbon Composites as Promising Electrode Materials for Supercapacitors and Lithium-Ion Batteries.

Photo from wikipedia

Biomass-derived carbon composites (e.g., metal oxide/biocarbon) have been used as promising electrode materials for energy storage devices owing to their natural abundance and simple preparation process. However, low loading content/inhomogeneous… Click to show full abstract

Biomass-derived carbon composites (e.g., metal oxide/biocarbon) have been used as promising electrode materials for energy storage devices owing to their natural abundance and simple preparation process. However, low loading content/inhomogeneous distribution of metal oxides and inefficient cracking of biocarbon (BC) are intractable obstacles that impede the efficient utilization of biomass. In this work, hierarchical porous MnO/BC composites were prepared by a facile molten-salt-assisted strategy based on the superior salt-water absorption ability of agaric. The addition of NaCl induces a liquid reaction medium by formation of a molten salt mixture at high temperature to effectively realize the activation and cracking of the bulk carbon, and it also acts as a recyclable sacrificial template to form mesopores and macropores in the as-prepared hierarchical porous MnO/BC composites. The highly porous and uniform BC framework effectively enhances ion diffusion and electron-transfer ability, serves as a protective layer to prevent fracturing and agglomeration of MnO, and thus enables superior rate performance and cycling stability of the MnO/BC composite for both supercapacitor electrodes (94 % capacity retention at 20 mA cm-2 after 5000 cycles) and lithium-ion battery anodes (783 mA h g-1 after 1000 cycles). Notably, considering the simple and low-cost preparation process, this work opens a promising avenue for the large-scale production of advanced metal oxide/BC hybrid electrode materials for electrochemical energy storage.

Keywords: hierarchical porous; electrode materials; mno; molten salt; porous mno; biocarbon

Journal Title: ChemSusChem
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.