LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kinetic Competition between Water-Splitting and Photocorrosion Reactions in Photoelectrochemical Devices.

Photo by a2eorigins from unsplash

Semiconductor photocorrosion is a major challenge for the stability of photoelectrochemical water-splitting devices. Usually, photocorrosion is studied on the basis of thermodynamic aspects, by comparing the redox potentials of water… Click to show full abstract

Semiconductor photocorrosion is a major challenge for the stability of photoelectrochemical water-splitting devices. Usually, photocorrosion is studied on the basis of thermodynamic aspects, by comparing the redox potentials of water to the self-decomposition potentials of the semiconductor or analyzing the equilibrium phases at given electrolyte conditions. However, that approach does not allow for a prediction of the decomposition rate of the semiconductor or the branching ratio with the redox reaction. A kinetic model has been developed to describe detailed reaction mechanisms and investigate competition between water-splitting and photocorrosion reactions. It is observed that some thermodynamically unstable semiconductors should photocorrode in a few minutes, whereas others are expected to operate over a period of years as a result of their extremely low photocorrosion current. The photostability of the semiconductor is mainly found to depend on surface chemical properties, catalyst activity, charge carrier density, and electrolyte acidity.

Keywords: competition water; water splitting; photocorrosion reactions; water; splitting photocorrosion; photocorrosion

Journal Title: ChemSusChem
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.