LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nickel‐Catalyzed Stereodivergent Synthesis of E‐ and Z‐Alkenes by Hydrogenation of Alkynes

Photo from academic.microsoft.com

Abstract A convenient protocol for stereodivergent hydrogenation of alkynes to E‐ and Z‐alkenes by using nickel catalysts was developed. Simple Ni(NO3)2⋅6 H2O as a catalyst precursor formed active nanoparticles, which were… Click to show full abstract

Abstract A convenient protocol for stereodivergent hydrogenation of alkynes to E‐ and Z‐alkenes by using nickel catalysts was developed. Simple Ni(NO3)2⋅6 H2O as a catalyst precursor formed active nanoparticles, which were effective for the semihydrogenation of several alkynes with high selectivity for the Z‐alkene (Z/E>99:1). Upon addition of specific multidentate ligands (triphos, tetraphos), the resulting molecular catalysts were highly selective for the E‐alkene products (E/Z>99:1). Mechanistic studies revealed that the Z‐alkene‐selective catalyst was heterogeneous whereas the E‐alkene‐selective catalyst was homogeneous. In the latter case, the alkyne was first hydrogenated to a Z‐alkene, which was subsequently isomerized to the E‐alkene. This proposal was supported by density functional theory calculations. This synthetic methodology was shown to be generally applicable in >40 examples and scalable to multigram‐scale experiments.

Keywords: hydrogenation; catalyzed stereodivergent; stereodivergent synthesis; synthesis alkenes; hydrogenation alkynes; nickel catalyzed

Journal Title: Chemsuschem
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.