LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Awakening Solar Hydrogen Evolution of MoS2 in Alkalescent Electrolyte through Doping with Co.

Photo by rocinante_11 from unsplash

Transition metal dichalcogenides, especially MoS2 , have been regarded as promising cocatalysts for the hydrogen evolution reaction (HER) because of a near-zero Gibbs free energy for H+ absorption. However, the… Click to show full abstract

Transition metal dichalcogenides, especially MoS2 , have been regarded as promising cocatalysts for the hydrogen evolution reaction (HER) because of a near-zero Gibbs free energy for H+ absorption. However, the HER activity of MoS2 is profoundly restricted by acidic media. Co-doped MoS2 (Co-MoS2 ) nanosheets are found to enable the highly efficient solar H2 evolution of CdS nanowires (NWs) in alkalescent electrolyte. The content of Co in MoS2 is optimized to 2.8 % and the Co-MoS2 content in Co-MoS2 /CdS NWs hybrids is 2.5 wt %; the optimized Co-MoS2 /CdS NWs shows a high H2 evolution rate of 14.22 mmol g-1  h-1 and 71 % apparent quantum efficiency in the Na2 SO3 electrolyte. Moreover, the H2 generation enabled by the Co-MoS2 cocatalyst can exhibit universality in alkalescent electrolytes, such as triethanolamine (TEA) and disodium ethylenediaminetetraacetic acid (EDTA), exhibiting greater photocatalytic H2 generation than Pt/CdS. The design of Co-MoS2 /CdS sheds light on the development of highly efficient low-cost photocatalysts for solar H2 generation from water reduction.

Keywords: evolution; alkalescent electrolyte; mos2 cds; hydrogen evolution; electrolyte

Journal Title: ChemSusChem
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.