LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of Voltage Range and Self‐Discharge in Aqueous Zinc‐Ion Hybrid Supercapacitors

Photo from wikipedia

Abstract Aqueous zinc‐ion hybrid supercapacitors are a promising energy storage technology, owing to their high safety, low cost, and long‐term stability. At present, however, there is a lack of understanding… Click to show full abstract

Abstract Aqueous zinc‐ion hybrid supercapacitors are a promising energy storage technology, owing to their high safety, low cost, and long‐term stability. At present, however, there is a lack of understanding of the potential window and self‐discharge of this aqueous energy storage technology. This study concerns a systematic investigation of the potential window of this device by cyclic voltammetry and galvanostatic charge–discharge. Hybrid supercapacitors based on commercial activated carbon (AC) demonstrate a wide and stable potential window (0.2 V to 1.8 V), high specific capacitances (308 F g−1 at 0.5 A g−1 and 110 F g−1 at 30 A g−1), good cycling stability (10000 cycles with 95.1 % capacitance retention), and a high energy density (104.8 Wh kg−1 at 383.5 W kg−1), based on the active materials. The mechanism involves simultaneous adsorption–desorption of ions on the AC cathode and zinc ion plating/stripping on the Zn anode. This work leads to better understanding of such devices and will aid future development of practical high‐performance aqueous zinc‐ion hybrid supercapacitors based on commercial carbon materials, thus accelerating the deployment of these hybrid supercapacitors and filling the gap between supercapacitors and batteries.

Keywords: aqueous zinc; hybrid supercapacitors; ion hybrid; zinc ion

Journal Title: Chemsuschem
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.