Fabricating rechargeable batteries for low-temperature (LT) applications is highly desired at high altitudes/latitudes, aerospace/subsea exploration, and defense. Lithium-ion batteries (LIBs) suffer from severe loss of capacity and energy/power density at… Click to show full abstract
Fabricating rechargeable batteries for low-temperature (LT) applications is highly desired at high altitudes/latitudes, aerospace/subsea exploration, and defense. Lithium-ion batteries (LIBs) suffer from severe loss of capacity and energy/power density at sub-zero temperatures caused by the sluggish kinetics. By utilizing both cations and anions as charge carriers, dual-ion batteries (DIBs) become a nascent battery system for LT tolerance by overcoming ion-desolvation during discharge. Here, we summarize recent advances in LT DIBs. To begin with, distinctive advantages of DIBs at LTs are highlighted compared to LIBs, with a special attention to anions (de-)intercalation, and the in-depth understanding of key challenges for LT operation is discussed. The next major section deals with the exciting progress on the advanced strategies to improve the LT performance of DIBs, including alternative electrode materials, reliable electrolyte formulations, and construction of interphase protective layers. Finally, prosects and future developments in this exciting field of LT DIBs are suggested.
               
Click one of the above tabs to view related content.