LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Covalent Grafting of a Nickel Thiolate Catalyst onto Covalent Organic Frameworks for Increased Photocatalytic Activity.

Photo from wikipedia

Covalent organic frameworks (COFs) have recently emerged as prospective photoactive materials with noble Pt as a cocatalyst for photocatalytic hydrogen evolution. In this work, a series of SH-group-functionalized covalent organic… Click to show full abstract

Covalent organic frameworks (COFs) have recently emerged as prospective photoactive materials with noble Pt as a cocatalyst for photocatalytic hydrogen evolution. In this work, a series of SH-group-functionalized covalent organic frameworks, TpPa-1-SH-X, is prepared by reaction of p-phenylenediamine (Pa) and 1,3,5-triformylphloroglucinol (Tp) with p-NH2 C6 H4 SH as a modulating agent. The reaction of TpPa-1-SH-X with NiII acetylacetonate Ni(acac)2 gave nickel thiolate-immobilized TpPa-1 (TpPa-1-SNi-X). The highest hydrogen evolution rate was 10.87 mmol h-1  g-1 , which was an enhancement of 16.47, 3.83, and 1.84 times than that of the parent TpPa-1, covalent-bond-free [(p-NH2 C6 H4 S)2 Ni]n /TpPa-1-SH-10, and 3 wt % Pt-deposited TpPa-1, respectively. This enhanced photocatalytic hydrogen evolution is ascribed to enhanced crystallinity, the use of NiII thiolate as a cocatalyst and covalent bonding between the cocatalyst and TpPa-1.

Keywords: organic frameworks; nickel thiolate; covalent grafting; covalent; covalent organic; hydrogen evolution

Journal Title: ChemSusChem
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.