Polyanionic material, specifically the NASICON-type material, is considered a promising cathode material for Na-ion batteries (SIBs) because of its stable structure and high operating voltage. Further, it improves the energy… Click to show full abstract
Polyanionic material, specifically the NASICON-type material, is considered a promising cathode material for Na-ion batteries (SIBs) because of its stable structure and high operating voltage. Further, it improves the energy density correlated with the well utilization of all Na in the compound. For Na3V2(PO4)2F3(NVPF), the extraction of the third Na, reported as the electrochemical inactivated, can be realized at a high voltage region while forming an irreversible tetragonal phase. In this study, we introduce Ti doping to the Na2VTi(PO4)2F3(NVTPF) material; we reveal that the Ti-doped NVTPF could effectively suppress the irreversible phase transformation, thus successfully harnessing Na in a wide voltage range. Experimental study discloses that the Ti-substituted Na2VTi(PO4)2F3 could take up the Na+ from Amam phase to Cmc21 phase between 1.0 V and 4.8 V reversibly accounting for the 2 Na+ transportation that shows favorable Na+ kinetics and structural stability. Our research provides the strategy to stabilize the polyanion structure upon charging at a high voltage range and inspires the utilization of full sodium in the polyanionic materials, which could be considered as a material design for future conventional applications.
               
Click one of the above tabs to view related content.