Dual-ion battery is a new type of battery in which both anions and cations participate in the energy storage process. However, this unique battery configuration imposes high requirements on the… Click to show full abstract
Dual-ion battery is a new type of battery in which both anions and cations participate in the energy storage process. However, this unique battery configuration imposes high requirements on the cathode, which typically presents a poor rate performance due to the sluggish diffusion dynamics and intercalation reaction kinetics of anions. Herein, we report petroleum coke-based soft carbon as the cathode for dual-ion battery, exhibiting a superior rate performance with a specific capacity of 96 mAh g-1 at a rate of 2 C and 72 mAh g-1 remained even at 50 C. In situ XRD and Raman demonstrate that the anions can directly form lower-stage graphite intercalation compounds during the charge process owing to the surface effect, skipping the long evolutionary process from higher to lower stage, thus significantly improving the rate performance. This study highlights the impact of the surface effect and provides a promising perspective for dual-ion batteries.
               
Click one of the above tabs to view related content.