LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design, synthesis, and biological evaluation of Helicobacter pylori inosine 5′‐monophosphate dehydrogenase (HpIMPDH) inhibitors

Photo by kimsuzi08 from unsplash

Inosine 5′‐monophosphate dehydrogenase (IMPDH) catalyzes a crucial step in the biosynthesis of guanine nucleotides. Being a validated target for immunosuppressive, antiviral, and anticancer drug development, lately it has been exploited… Click to show full abstract

Inosine 5′‐monophosphate dehydrogenase (IMPDH) catalyzes a crucial step in the biosynthesis of guanine nucleotides. Being a validated target for immunosuppressive, antiviral, and anticancer drug development, lately it has been exploited as a promising target for antimicrobial therapy. Extending our previous work on Mycobacterium tuberculosis IMPDH, GuaB2, inhibitor development, we screened a set of 23 new chemical entities (NCEs) with substituted flavone (Series 1) and 1,2,3‐triazole (Series 2) core structures for their in vitro Helicobacter pylori IMPDH (HpIMPDH) and human IMPDH2 (hIMPDH2) inhibitory activities. All the NCEs possessed acceptable molecular, physicochemical, and toxicity property profiles. The ranges for HpIMPDH and hIMPDH2 inhibition were 9–99.9% and 16–57%, respectively, at 10 μM concentration. The most potent HpIMPDH inhibitor, 25c, exhibited IC50 value of 1.27 μM with no hIMPDH2 inhibitory activity. The moderately potent, structurally novel hit molecule, 25c, may serve as a lead for further design and development of highly potent HpIMPDH inhibitors.

Keywords: hpimpdh inhibitors; monophosphate dehydrogenase; hpimpdh; inosine monophosphate; helicobacter pylori

Journal Title: Drug Development Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.