Abstract Automated animal monitoring via radio‐frequency identification (RFID) technology allows efficient and extensive data sampling of individual activity levels and is therefore commonly used for ecological research. However, processing RFID… Click to show full abstract
Abstract Automated animal monitoring via radio‐frequency identification (RFID) technology allows efficient and extensive data sampling of individual activity levels and is therefore commonly used for ecological research. However, processing RFID data is still a largely unresolved problem, which potentially leads to inaccurate estimates for behavioral activity. One of the major challenges during data processing is to isolate independent behavioral actions from a set of superfluous, nonindependent detections. As a case study, individual blue tits (Cyanistes caeruleus) were simultaneously monitored during reproduction with both video recordings and RFID technology. We demonstrated how RFID data can be processed based on the time spent in‐ and outside a nest box. We then validated the number and timing of nest visits obtained from the processed RFID dataset by calibration against video recordings. The video observations revealed a limited overlap between the time spent in‐ and outside the nest box, with the least overlap at 23 s for both sexes. We then isolated exact arrival times from redundant RFID registrations by erasing all successive registrations within 23 s after the preceding registration. After aligning the processed RFID data with the corresponding video recordings, we observed a high accuracy in three behavioral estimates of parental care (individual nest visit rates, within‐pair alternation and synchronization of nest visits). We provide a clear guideline for future studies that aim to implement RFID technology in their research. We argue that our suggested RFID data processing procedure improves the precision of behavioral estimates, despite some inevitable drawbacks inherent to the technology. Our method is useful, not only for other cavity breeding birds, but for a wide range of (in)vertebrate species that are large enough to be fitted with a tag and that regularly pass near or through a fixed antenna.
               
Click one of the above tabs to view related content.