Abstract Modeling plant growth using functional traits is important for understanding the mechanisms that underpin growth and for predicting new situations. We use three data sets on plant height over… Click to show full abstract
Abstract Modeling plant growth using functional traits is important for understanding the mechanisms that underpin growth and for predicting new situations. We use three data sets on plant height over time and two validation methods—in‐sample model fit and leave‐one‐species‐out cross‐validation—to evaluate non‐linear growth model predictive performance based on functional traits. In‐sample measures of model fit differed substantially from out‐of‐sample model predictive performance; the best fitting models were rarely the best predictive models. Careful selection of predictor variables reduced the bias in parameter estimates, and there was no single best model across our three data sets. Testing and comparing multiple model forms is important. We developed an R package with a formula interface for straightforward fitting and validation of hierarchical, non‐linear growth models. Our intent is to encourage thorough testing of multiple growth model forms and an increased emphasis on assessing model fit relative to a model's purpose.
               
Click one of the above tabs to view related content.