LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Landscape genetic inferences vary with sampling scenario for a pond‐breeding amphibian

Photo by kalenemsley from unsplash

Abstract A critical decision in landscape genetic studies is whether to use individuals or populations as the sampling unit. This decision affects the time and cost of sampling and may… Click to show full abstract

Abstract A critical decision in landscape genetic studies is whether to use individuals or populations as the sampling unit. This decision affects the time and cost of sampling and may affect ecological inference. We analyzed 334 Columbia spotted frogs at 8 microsatellite loci across 40 sites in northern Idaho to determine how inferences from landscape genetic analyses would vary with sampling design. At all sites, we compared a proportion available sampling scheme (PASS), in which all samples were used, to resampled datasets of 2–11 individuals. Additionally, we compared a population sampling scheme (PSS) to an individual sampling scheme (ISS) at 18 sites with sufficient sample size. We applied an information theoretic approach with both restricted maximum likelihood and maximum likelihood estimation to evaluate competing landscape resistance hypotheses. We found that PSS supported low‐density forest when restricted maximum likelihood was used, but a combination model of most variables when maximum likelihood was used. We also saw variations when AIC was used compared to BIC. ISS supported this model as well as additional models when testing hypotheses of land cover types that create the greatest resistance to gene flow for Columbia spotted frogs. Increased sampling density and study extent, seen by comparing PSS to PASS, showed a change in model support. As number of individuals increased, model support converged at 7–9 individuals for ISS to PSS. ISS may be useful to increase study extent and sampling density, but may lack power to provide strong support for the correct model with microsatellite datasets. Our results highlight the importance of additional research on sampling design effects on landscape genetics inference.

Keywords: vary sampling; maximum likelihood; landscape; model; landscape genetic

Journal Title: Ecology and Evolution
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.