LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Shifts in plant functional community composition under hydrological stress strongly decelerate litter decomposition

Photo from wikipedia

Abstract Litter decomposition is a key process of nutrient and carbon cycling in terrestrial ecosystems. The decomposition process will likely be altered under ongoing climate change, both through direct effects… Click to show full abstract

Abstract Litter decomposition is a key process of nutrient and carbon cycling in terrestrial ecosystems. The decomposition process will likely be altered under ongoing climate change, both through direct effects on decomposer activity and through indirect effects caused by changes in litter quality. We studied how hydrological change indirectly affects decomposition via plant functional community restructuring caused by changes in plant species’ relative abundances (community‐weighted mean (CWM) traits and functional diversity). We further assessed how those indirect litter quality effects compare to direct effects. We set up a mesocosm experiment, in which sown grassland communities and natural turf pieces were subjected to different hydrological conditions (dryness and waterlogging) for two growing seasons. Species‐level mean traits were obtained from trait databases and combined with species’ relative abundances to assess functional community restructuring. We studied decomposition of mixed litter from these communities in a common “litterbed.” These indirect effects were compared to effects of different hydrological conditions on soil respiration and on decomposition of standard litter (direct effects). Dryness reduced biomass production in sown communities and natural turf pieces, while waterlogging only reduced biomass in sown communities. Hydrological stress caused profound shifts in species’ abundances and consequently in plant functional community composition. Hydrologically stressed communities had higher CMW leaf dry matter content, lower CMW leaf nitrogen content, and lower functional diversity. Lower CWM leaf N content and functional diversity were strongly related to slower decomposition. These indirect effects paralleled direct effects, but were larger and longer‐lasting. Species mean traits from trait databases had therefore considerable predictive power for decomposition. Our results show that stressful soil moisture conditions, that are likely to occur more frequently in the future, quickly shift species’ abundances. The resulting functional community restructuring will decelerate decomposition under hydrological stress.

Keywords: hydrological stress; community; plant functional; functional community; decomposition

Journal Title: Ecology and Evolution
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.