Abstract Traits of organisms are shaped by their living environments and also determined in part by their phylogenetic relationships. For example, phylogenetic relationships often affect the geographic distributions of animals… Click to show full abstract
Abstract Traits of organisms are shaped by their living environments and also determined in part by their phylogenetic relationships. For example, phylogenetic relationships often affect the geographic distributions of animals and cause variation in their living environments, which usually play key roles in the life history and determine the functional traits of species. As an ancient family of mammals, bears widely distribute and have evolved some specific strategies for survival and reproduction during their longāterm evolutionary histories. Many studies on the ecology of bears have been conducted in recent decades, but few have focused on the relationships between their geographic distributions and ecological adaptations. Here, using bears as a model system, we collected and reanalyzed data from the available literatures to explore how geographic distributions and phylogenetic relationships shape the functional traits of animals. We found a positive relationship between phylogenetic relatedness and geographic distributions, with bears distributed in adjacent areas applying more similar strategies to survive and reproduce: (a) Bears living at high latitudes consumed a higher proportion of vertebrates, which may provide more fat for adaptation to low temperatures, and (b) their reproduction rhythms follow fluctuations in seasonal forage availability and quality, in which bears reach mating status from March to May and give birth in approximately November or later.
               
Click one of the above tabs to view related content.