LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Expansion of non‐native plant Flaveria bidentis (L.) Kuntze driven by a range of factors leading to patchy distribution patterns

Photo by magicpattern from unsplash

Abstract Given the growing concern over the ecological impacts of non‐native species, exploring these species' expansion edge and distribution patterns and their driving factors is important for developing suitable management… Click to show full abstract

Abstract Given the growing concern over the ecological impacts of non‐native species, exploring these species' expansion edge and distribution patterns and their driving factors is important for developing suitable management measures. Flaveria bidentis (L.) Kuntze, a non‐native plant that was introduced to China in the 1990s, has spread from southern Hebei Province, where it first took root, to the surrounding regions and has become one of the most notorious invasive weeds in northern China. Based on 15 years (2006–2021) of extensive field investigations, the spatial distribution of sampling and occurrence points were mapped in the recently expanded region of F. bidentis' population. Then, nearest neighbor analysis is used to characterize the spatial pattern differences between samplings and occurrences. An exponential decay function was used to elucidate the driving factors contributing to the presence and absence of F. bidentis. Our results demonstrated an effective random sampling setup, a heterogeneous spatial distribution of F. bidentis, and a multi‐regional independent aggregation distribution pattern (p < .01). There were significant spatial correlations between the aggregation areas of plant occurrence points and the locations of roads and construction sand distribution centers. These findings suggest that human activities involving major roads and construction sand distribution centers were driving factors contributing to this long‐distance dispersal and spatially discontinuous distribution patterns. The presence of these patchy distribution patterns has important implications for ongoing efforts to manage populations of non‐native species.

Keywords: flaveria bidentis; distribution patterns; non native; plant; bidentis; distribution

Journal Title: Ecology and Evolution
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.