LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure and molecular evolution of the barcode fragment of cytochrome oxidase I (COI) in Macrocheles (Acari: Mesostigmata: Macrochelidae)

Photo from wikipedia

Abstract Consisting of approximately 320 species, Macrocheles is the most widely distributed genus in the family Macrochelidae. Though some studies have focused on the description of Macrochelidae using molecular techniques… Click to show full abstract

Abstract Consisting of approximately 320 species, Macrocheles is the most widely distributed genus in the family Macrochelidae. Though some studies have focused on the description of Macrochelidae using molecular techniques (e.g., RAPD) and sequencing of some genes, the interspecies relationships within Macrocheles still remain uncertain. As such, in the present study, we examine all publicly available data in GenBank to explore the evolutionary relationships, divergence times, and amino acid variations within Macrocheles. Exploring the patterns of variation in the secondary protein structure shows high levels of conservation in the second and last helices, emphasizing their involvement in the energy metabolism function of the cytochrome oxidase subunit I enzyme. According to our phylogenetic analysis, all available Macrocheles species are clustered in a monophyletic group. However, in the reconstructed trees, we subdivided M. merdarius and M. willowae into two well‐supported intraspecific clades that are driven by geographic separation and host specificity. We also estimate the divergence time of selected species using calibration evidence from available fossils and previous studies. Thus, we estimate that the age of the Parasitiformes is 320.4 (273.3–384.3) Mya (Permian), and the Mesostigmata is 285.1 (270.8–286.4) Mya (Carboniferous), both with likely origins in the Paleozoic era. We also estimate that Macrocheles diverged from other Mesostigmata mites during the Mesozoic, approximately 222.9 Mya.

Keywords: structure molecular; molecular evolution; cytochrome oxidase; structure

Journal Title: Ecology and Evolution
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.