LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Black swans in space: modeling spatiotemporal processes with extremes.

Photo by john_cameron from unsplash

In ecological systems, extremes can happen in time, such as population crashes, or in space, such as rapid range contractions. However, current methods for joint inference about temporal and spatial… Click to show full abstract

In ecological systems, extremes can happen in time, such as population crashes, or in space, such as rapid range contractions. However, current methods for joint inference about temporal and spatial dynamics (e.g., spatiotemporal modeling with Gaussian random fields) may perform poorly when underlying processes include extreme events. Here we introduce a model that allows for extremes to occur simultaneously in time and space. Our model is a Bayesian predictive-process GLMM (generalized linear mixed-effects model) that uses a multivariate-t distribution to describe spatial random effects. The approach is easily implemented with our flexible R package glmmfields. First, using simulated data, we demonstrate the ability to recapture spatiotemporal extremes, and explore the consequences of fitting models that ignore such extremes. Second, we predict tree mortality from mountain pine beetle (Dendroctonus ponderosae) outbreaks in the U.S. Pacific Northwest over the last 16 yr. We show that our approach provides more accurate and precise predictions compared to traditional spatiotemporal models when extremes are present. Our R package makes these models accessible to a wide range of ecologists and scientists in other disciplines interested in fitting spatiotemporal GLMMs, with and without extremes.

Keywords: space; modeling spatiotemporal; spatiotemporal processes; swans space; black swans; space modeling

Journal Title: Ecology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.