LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Measuring continuous compositional change using decline and decay in zeta diversity.

Photo by brittaniburns from unsplash

Incidence, or compositional, matrices are generated for a broad range of research applications in biology. Zeta diversity provides a common currency and conceptual framework that links incidence-based metrics with multiple… Click to show full abstract

Incidence, or compositional, matrices are generated for a broad range of research applications in biology. Zeta diversity provides a common currency and conceptual framework that links incidence-based metrics with multiple patterns of interest in biology, ecology and biodiversity science. It quantifies the variation in species (or OTU) composition of multiple assemblages (or cases) in space or time, to capture the contribution of the full suite of narrow, intermediate and wide-ranging species to biotic heterogeneity. Here we provide a conceptual framework for the application and interpretation of patterns of continuous change in compositional diversity using zeta diversity. This includes consideration of the survey design context, and the multiple ways in which zeta diversity decline and decay can be used to examine and test turnover in the identity of elements across space and time. We introduce the zeta ratio-based retention rate curve to quantify rates of compositional change. We illustrate these applications using 11 empirical datasets from a broad range of taxa, scales and levels of biological organisation - from DNA molecules and microbes to communities and interaction networks - including one of the original data sets used to express compositional change and distance decay in ecology. We show (i) how different sample selection schemes used during the calculation of compositional change are appropriate for different data types and questions, (ii) how higher orders of zeta may in some cases better detect shifts and transitions, and (iii) the relative roles of rare versus common species in driving patterns of compositional change. By exploring the application of zeta diversity decline and decay, including the retention rate, across this broad range of contexts, we demonstrate its application for understanding continuous turnover in biological systems. This article is protected by copyright. All rights reserved.

Keywords: decay; diversity; zeta diversity; compositional change; ecology

Journal Title: Ecology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.