LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Targeted plant defense: silicon conserves hormonal defense signaling impacting chewing but not fluid-feeding herbivores.

Photo from wikipedia

Plants deploy an arsenal of chemical and physical defenses against arthropod herbivores, but it may be most cost efficient to produce these only when attacked. Herbivory activates complex signaling pathways… Click to show full abstract

Plants deploy an arsenal of chemical and physical defenses against arthropod herbivores, but it may be most cost efficient to produce these only when attacked. Herbivory activates complex signaling pathways involving several phytohormones, including jasmonic acid (JA), which regulate production of defensive compounds. The Poaceae also have the capacity to take up large amounts of silicon (Si) which accumulates in plant tissues. Si accumulation has anti-herbivore properties, but it is poorly understood how Si defenses relate to defense hormone signaling. Here we show that Si enrichment causes the model grass Brachypodium distachyon to show lower levels of JA induction when attacked by chewing herbivores. Triggering this hormone even at lower concentrations, however, prompts Si uptake and physical defenses (e.g. leaf hairs) which negatively impact chewing herbivores. Removal of leaf hairs restored performance. Crucially, activation of such Si-based defense is herbivore-specific and occurred only in response to chewing and not fluid-feeding (aphid) herbivores. This aligned with our meta-analysis of 88 studies that showed Si defenses were more effective against chewing herbivores than fluid-feeders. Our results suggest integration between herbivore defenses in a model Si-accumulating plant, which potentially allows it to avoid unnecessary activation of other costly defenses.

Keywords: plant; defense; fluid feeding; silicon; chewing fluid

Journal Title: Ecology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.