LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ecological and environmental context shape the differential effects of a facilitator in its native and invaded ranges.

Photo from wikipedia

Invasive species often exhibit disproportionately strong negative effects in their introduced range compared to their native range, and much research has been devoted to understanding the role of shared evolutionary… Click to show full abstract

Invasive species often exhibit disproportionately strong negative effects in their introduced range compared to their native range, and much research has been devoted to understanding the role of shared evolutionary history, or lack thereof, in driving these differences. Less studied is whether introduced species, particularly those that are important as facilitators in their native range, have persistent positive effects in their invaded range despite a lack of a shared evolutionary history with the invaded community. Here, we manipulated the density of a habitat-forming facilitator, the high intertidal acorn barnacle Balanus glandula, factorially with herbivore density in its native range (Bluestone Point, British Columbia, Canada) and invaded range (Punta Ameghino, Chubut Province, Argentina) to determine how this facilitator differentially affects associated species at these two locations. Given that high intertidal species at Punta Ameghino (PA) are evolutionarily naïve to barnacles, we predicted that the positive effects of B. glandula at PA would be absent or weak compared to those at Bluestone Point (BP). However, we found that B. glandula had an equally positive effect on herbivore biomass at PA compared to BP, possibly because the moisture-retaining properties of barnacle bed habitats are particularly important in seasonally dry Patagonia. Barnacle presence indirectly decreased ephemeral algal cover at BP by increasing grazer pressure, but barnacles instead facilitated ephemeral algae at PA. In contrast, B. glandula increased perennial algal cover at BP, but generally decreased perennial algal cover at PA, likely due to differences in dominant algal morphology. Though our experiment was limited to one location on each continent, our results suggest that shared evolutionary history may not be a prerequisite for strong facilitation to occur, but rather that the nature and strength of novel species interactions are determined by the traits of associated species and the environment in which they occur.

Keywords: range; native range; shared evolutionary; algal cover; ecological environmental; evolutionary history

Journal Title: Ecology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.