LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Positive contribution of macrofaunal biodiversity to secondary production and seagrass carbon metabolism

Photo from wikipedia

Abstract Coastal vegetated habitats such as seagrasses are known to play a critical role in carbon cycling and the potential to mitigate climate change, as blue carbon habitats have been… Click to show full abstract

Abstract Coastal vegetated habitats such as seagrasses are known to play a critical role in carbon cycling and the potential to mitigate climate change, as blue carbon habitats have been repeatedly highlighted. However, little information is known about the role of associated macrofauna communities on the dynamics of critical processes of seagrass carbon metabolism (e.g., respiration, turnover, and production). We conducted a field study across a spatial gradient of seagrass meadows involving variable environmental conditions and macrobenthic diversity to investigate (1) the relationship between macrofauna biodiversity and secondary production (i.e., consumer incorporation of organic matter per time unit), and (2) the role of macrofauna communities in seagrass organic carbon metabolism (i.e., respiration and primary production). We show that, although several environmental factors influence secondary production, macrofauna biodiversity controls the range of local seagrass secondary production. We demonstrate that macrofauna respiration rates were responsible for almost 40% of the overall seafloor community respiration. Macrofauna represented on average >25% of the total benthic organic C stocks, high secondary production that is likely to become available to upper trophic levels of the coastal food web. Our findings support the role of macrofauna biodiversity in maintaining productive ecosystems, implying that biodiversity loss due to ongoing environmental change yields less productive seagrass ecosystems. Therefore, the assessment of carbon dynamics in coastal habitats should include associated macrofauna biodiversity elements if we aim to obtain robust estimates of global carbon budgets required to implement management actions for the sustainable functioning of the world's coasts.

Keywords: secondary production; carbon; carbon metabolism; production; biodiversity; seagrass

Journal Title: Ecology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.