LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distinct modulation of cellular immunopeptidome by the allosteric regulatory site of ER aminopeptidase 1.

Photo by noicedangel from unsplash

ER aminopeptidase 1 (ERAP1) is an ER-resident aminopeptidase that excises N-terminal residues of peptides that then bind onto Major Histocompatibility Complex I molecules (MHC-I) and indirectly modulates adaptive immune responses.… Click to show full abstract

ER aminopeptidase 1 (ERAP1) is an ER-resident aminopeptidase that excises N-terminal residues of peptides that then bind onto Major Histocompatibility Complex I molecules (MHC-I) and indirectly modulates adaptive immune responses. ERAP1 contains an allosteric regulatory site that accommodates the C-terminus of at least some peptide substrates, raising questions about its exact influence on antigen presentation and the potential of allosteric inhibition for cancer immunotherapy. We used an inhibitor that targets this regulatory site to study its effect on the immunopeptidome of a human cancer cell line. The immunopeptidomes of allosterically inhibited and ERAP1 knockout cells contain high-affinity peptides with sequence motifs consistent with the cellular HLA class I haplotypes but were strikingly different in peptide composition. Compared to knockout cells, allosteric inhibition did not affect the length distribution of peptides and skewed the peptide repertoire both in terms of sequence motifs and HLA allele utilization, indicating significant mechanistic differences between the two ways of disrupting ERAP1 function. These findings suggest that the regulatory site of ERAP1 plays distinct roles in antigenic peptide selection, which should be taken into consideration when designing therapeutic interventions targeting the cancer immunopeptidome. This article is protected by copyright. All rights reserved.

Keywords: distinct modulation; immunopeptidome; allosteric regulatory; regulatory site; aminopeptidase; site

Journal Title: European journal of immunology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.