LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Easy and Green Route towards Nanostructured ZnO as an Active Sensing Material with Unexpected H2 S Dosimeter-Type Behaviour

Photo by cdc from unsplash

Nanostructured ZnO particles were prepared through a straightforward, quick and low-temperature synthesis route involving coprecipitation of the metal precursor salts with oxalic acid, followed by hydrothermal treatment at 135 or… Click to show full abstract

Nanostructured ZnO particles were prepared through a straightforward, quick and low-temperature synthesis route involving coprecipitation of the metal precursor salts with oxalic acid, followed by hydrothermal treatment at 135 or 160 °C. The synthesised nanostructured powders were thoroughly characterised by a wide array of analytical techniques from the morphological (Scanning Electron Microscopy –SEM-, Transmission Electron Microscopy TEM-, Energy-dispersive X-ray Spectroscopy -EDXS-), structural (Powder X-Ray Diffraction -PXRD-, Selected Area Electron Diffraction -SAED-), compositional (X-ray Photoelectron Spectroscopy -XPS-) and physical (thermal stability) point of view. As far as functional applications are concerned, the powders were tested as gas sensor materials for H2S detection. Thereby these ZnO particles show unexpected gas dosimeter behaviour at 150 °C. Based on these observations and on a comparison with literature a new model for the interaction of ZnO nanostructures with H2S is proposed.

Keywords: microscopy; dosimeter; spectroscopy; route; nanostructured zno

Journal Title: European Journal of Inorganic Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.