LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and Development of Pd-Catalyzed Aerobic N-Demethylation Strategies for the Synthesis of Noroxymorphone in Continuous Flow Mode

Photo from academic.microsoft.com

Strategies for the generation of noroxymorphone from 14-hydroxymorphinone are presented. Noroxymorphone is the key intermediate in the synthesis of various opioid antagonists, including naloxone, naltrexone and nalmefene, as well as… Click to show full abstract

Strategies for the generation of noroxymorphone from 14-hydroxymorphinone are presented. Noroxymorphone is the key intermediate in the synthesis of various opioid antagonists, including naloxone, naltrexone and nalmefene, as well as mixed agonists-antagonists like nalbuphine. The transformation requires removal of the N-methyl group from the naturally occurring opiates and a double bond hydrogenation. The pivotal reaction step thereby is a N-methyl oxidation with colloidal palladium(0) as catalyst and pure oxygen as terminal oxidant. The reaction produces a 1,3-oxazolidine intermediate, which can be readily hydrolyzed to the corresponding secondary amine. Different reaction sequences and various phenol protection groups were explored. The most direct route consumes only H2, O2 and H2O as stoichiometric reagents and produces only H2O as by-product. Challenges inherent in gas-liquid reactions with oxygen as oxidant were addressed by developing a continuous flow process.

Keywords: development catalyzed; aerobic demethylation; design development; continuous flow; flow; catalyzed aerobic

Journal Title: European Journal of Organic Chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.